Variants of Entropy Power Inequality

نویسندگان

  • Sergey Bobkov
  • Arnaud Marsiglietti
چکیده

An extension of the entropy power inequality to the form N r (X +Y ) ≥ N r (X) +N r (Y ) with arbitrary independent summands X and Y in R is obtained for the Rényi entropy and powers α ≥ (r + 1)/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-power inequality for weighted entropy

We analyse an analog of the entropy-power inequality for the weighted entropy. In particular, we discuss connections with weighted Lieb‘s splitting inequality and an Gaussian additive noise formula. Examples and counterexamples are given, for some classes of probability distributions.

متن کامل

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

On the analogue of the concavity of entropy power in the Brunn-Minkowski theory

Elaborating on the similarity between the entropy power inequality and the Brunn-Minkowski inequality, Costa and Cover conjectured in On the similarity of the entropy power inequality and the BrunnMinkowski inequality (IEEE Trans. Inform. Theory 30 (1984), no. 6, 837-839) the 1 n -concavity of the outer parallel volume of measurable sets as an analogue of the concavity of entropy power. We inve...

متن کامل

Volumes of Restricted Minkowski Sums and the Free Analogue of the Entropy Power Inequality

In noncommutative probability theory independence can be based on free products instead of tensor products. This yields a highly noncommutative theory: free probability (for an introduction see [9]). The analogue of entropy in the free context was introduced by the second named author in [8]. Here we show that Shannon's entropy power inequality ([6],[1]) has an analogue for the free entropy χ(X...

متن کامل

Optimal Transport to the Entropy-Power Inequality and a Reverse Inequality

We present a simple proof of the entropy-power inequality using an optimal transportation argument which takes the form of a simple change of variables. The same argument yields a reverse inequality involving a conditional differential entropy which has its own interest. For each inequality, the equality case is easily captured by this method and the proof is formally identical in one and sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.04897  شماره 

صفحات  -

تاریخ انتشار 2016